

Our new aggregation rule: Bulyan **Bulyan**: description

Bulyan is a "composite" aggregation rule.

Let: A a Byzantine-resilient aggregation rule *f* the # of Byzantine workers to support n_A the # of workers A needs to support f

Then: Bulyan(A) needs $n \ge n_A + 2f$ workers

- The 1st step of Bulyan works as follow:
 - R = {received gradients} S = {} # selected gradients

For full model descriptions, please see the paper.

• Fading learning rate: $\eta(epoch) = \eta_0 \frac{1}{epoch + r}$

This step recursively uses A to select a majority (i.e. $\geq 2 f + 1$) of non-Byzantine gradients.

- The 2nd step builds the output gradient. The selected gradients *S* is a matrix of *d* rows and $(n - n_A)$ columns. Let $\beta = n - n_A - 2f$.
- Then each coordinate *i* of the output gradient is equal to the *average* of the β closest values, in row *i* of *S*, to the **median** of these values.

ICML 2018

 10^{-4} • L2-regularization: • Bulyan used with: A = Krum

References

- Blanchard, Peva, El Mhamdi, El Mahdi, Guerraoui, Rachid, and Stainer, Julien. Machine learning with adversaries: Byzantine tolerant gradient descent. In Advances in Neural Information Processing Systems 30, pp. 118–128. Curran Associates, Inc., 2017.
- Cohen, Michael B, Lee, Yin Tat, Miller, Gary, Pachocki, Jakub, and Sidford, Aaron. Geometric median in nearly linear time. In *Proceedings* of the forty-eighth annual ACM symposium on Theory of Computing, pp. 9-21. ACM, 2016.
- Rousseeuw, Peter J. Multivariate estimation with high breakdown [3] point. Mathematical statistics and applications, 8:283–297, 1985.

July 10-15, Stockholm, Sweden